Face recognition using holistic Fourier invariant features

نویسندگان

  • Jian-Huang Lai
  • Pong C. Yuen
  • Guo-Can Feng
چکیده

This paper presents a new method for holistic face representation, called spectroface. Spectroface representation combines the wavelet transform and the Fourier transform. We have shown that by decomposing a face image using wavelet transform, the low-frequency face image is less sensitive to the facial expression variations. This paper also proves that the spectroface representation is invariant to translation, scale and on-the-plane rotation. To handle the rotation in depth, multiple view images are used to determine the reference image representation. Based on the spectroface representation, a face recognition system is designed and developed. Yale and Olivetti face databases are selected to evaluate the proposed system. These two databases contain 55 persons with 565 face images at di!erent orientations, scale, facial expressions, small occlusions and di!erent illuminations. The recognition accuracy is over 94%. If we consider the top three matches, the accuracy is over 98%. The recognition system is developed on Pentium 200 MHz computer and the recognition time is less than 3 seconds for database with 55 persons ( 2000 Pattern Recognition Scociety. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features

In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. ...

متن کامل

Face Recognition based on Oriented Complex Wavelets and FFT

The Face is a physiological Biometric trait used in Biometric System. In this paper face recognition using oriented complex wavelets and Fast Fourier Transform (FROCF) is proposed. The five-level Dual Tree Complex Wavelet Transform(DTCWT) is applied on face images to get shift invariant and directional features along ±15o ,± 45o and ± 75o angular directions. The different pose, illumination and...

متن کامل

Color Face Recognition using Texture Features and Fractional Fourier Transforms

This paper proposes color local binary pattern and fractional Fourier Transform features for face recognition. The YCbCr Color space model is used in this approach. Fractional Fourier Transform features and local binary pattern features are used for face recognition. kNN classifier is applied to face recognition phase.

متن کامل

Development of a Modified Local Binary Pattern-Gabor Wavelet Transform Aging Invariant Face Recognition System

Human faces undergo considerable amount of variations with aging. This variation being experienced in facial texture and shape with different ages of a particular subject makes recognition of faces very difficult. However, most existing Face Recognition Systems (FRS) suffer from high misclassification of faces because of the large variation in face appearances of the same individual due to agin...

متن کامل

Robust Facial Data Recognition using Multimodal Fusion Features in Multi-Variant Face Acquisition

Biometric use physiological traits such as fingerprints, face and behavioral traits such as voice, hand signatures characteristics to verify an individual’s identity. The two process involved in biometrics are verification and identification. Verification process is performed by matching an individual’s biometric with the template of claimed identity only. The identification process performed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2001